

X2Y to replace a Common Mode Choke

- 1) Common mode choke basic reminder/recap
- <u>Ideal Common Mode Choke</u>

An ideal Common Mode Choke would let a differential signal go through with no attenuation, while it would completely block a common signal:

Differential signal:

Advantage of a Common Mode Choke

In many cases, a Common Mode Choke can reject a common mode noise even when it is in the same frequency range as the differential signal we want to pass.

In this case, a differential signal at 1GHz would have about 1dB loss (blue curve), while a common mode signal at 1GHz would have about 27 dB rejection (red curve)

- Technical Issues with a CMC
 - The CMC is mounted in series, hence DC current limitation and power consumption.
 - Introduction of new noise due to windings that are never identical for each line.
 - Common noise rejection gets to 40 dB at the very best.
 - In most cases, need to add other components (Cy caps, Cx caps, feed-through, Pi filters, etc.) to improve performance.
 - Assembly management, especially for large sizes.

Other issues

High cost, long lead-time, big size, weight, sensitive to vibrations, narrow temperature range...

2) X2Y component - recap

- Field shielding
- Balanced shunt impedance
- ➤ H-field cancellation (lower ESL)
- Reduction of mounted inductance*

However, the X2Y will <u>not</u> be satisfactory if the differential signal is in the same frequency range as the common mode signal: Scc21 and Sdd21 are somewhat similar for an X2Y, contrary to a Common Mode Choke (see previous paragraph).

^{*}When properly laid out (see paragraph 6), the X2Y component provides great performances.

3) Performance comparison

PCB: 60-milthickFR4

		Size (mm)			Max DC Current	Max DC
	Туре	W	L	T	Rating (A)	Resistance (Ω)
C3	X2Y	3.2	1.6	1.27	N/A	0
Lī	DC choke	7	6	3.5	4	0.015
L2	DC choke	12	11	6	8	0.06
L5	DC choke	12	11	6	6	0.014
L6	DC choke	5	5	4.5	1.4	0.85
.7	DC choke	9	7	4.5	5	0.01
L8	DC choke	4.7	4.5	2	2.6	0.05
L9	DC choke	15	13	6	10	0.004

4) Selection of the value of X2Y

X2Y component can be easily selected to filter EMI, based on:

- Required signal pass-band => sets maximum cap. Value
- Required noise stop band and minimum rejection => sets min value

https://s21plotter.johansondielectrics.com/

5) Example: replacement of CMC + Pi filter with X2Y

6) Layout guidelines

To get the best performances of the X2Y component, it is important to follow our layout recommendations:

https://www.johansondielectrics.com/downloads/jdi-x2y-pcb-design-guide.pdf

